1,718 research outputs found

    Modelling and simulating in systems biology: an approach based on multi-agent systems

    Get PDF
    Systems Biology is an innovative way of doing biology recently raised in bio-informatics contexts, characterised by the study of biological systems as complex systems with a strong focus on the system level and on the interaction dimension. In other words, the objective is to understand biological systems as a whole, putting on the foreground not only the study of the individual parts as standalone parts, but also of their interaction and of the global properties that emerge at the system level by means of the interaction among the parts. This thesis focuses on the adoption of multi-agent systems (MAS) as a suitable paradigm for Systems Biology, for developing models and simulation of complex biological systems. Multi-agent system have been recently introduced in informatics context as a suitabe paradigm for modelling and engineering complex systems. Roughly speaking, a MAS can be conceived as a set of autonomous and interacting entities, called agents, situated in some kind of nvironment, where they fruitfully interact and coordinate so as to obtain a coherent global system behaviour. The claim of this work is that the general properties of MAS make them an effective approach for modelling and building simulations of complex biological systems, following the methodological principles identified by Systems Biology. In particular, the thesis focuses on cell populations as biological systems. In order to support the claim, the thesis introduces and describes (i) a MAS-based model conceived for modelling the dynamics of systems of cells interacting inside cell environment called niches. (ii) a computational tool, developed for implementing the models and executing the simulations. The tool is meant to work as a kind of virtual laboratory, on top of which kinds of virtual experiments can be performed, characterised by the definition and execution of specific models implemented as MASs, so as to support the validation, falsification and improvement of the models through the observation and analysis of the simulations. A hematopoietic stem cell system is taken as reference case study for formulating a specific model and executing virtual experiments

    Endemism in recently diverged angiosperms is associated with polyploidy

    Get PDF
    Endemic (range restricted or precinctive) plant species are frequently observed to exhibit polyploidy (chromosome set duplication), which can drive shifts in ecology for angiosperms, but whether endemism is generally associated with polyploidy throughout the flowering plants has not been determined. We tested the hypothesis that polyploidy is more frequent and more pronounced (higher evident ploidy levels) for recently evolved endemic angiosperms. Chromosome count data, molecular dating and distribution for 4210 species (representing all major clades of angiosperms and including the largest families) were mined from literature-based databases. Upper boundary regression was used to investigate the relationship between the maximum number of chromosomes and time since taxon divergence, across clades and separately for families, comparing endemic with non-endemic species. A significant negative exponential relationship between maximum number of chromosomes and taxon age was evident across angiosperms (R2adj = 0.48 for all species, R2adj = 0.49 for endemics; R2adj = 0.44 for non-endemics; p always < 0.0001), recent endemics demonstrating greater maximum chromosome numbers (y intercept = 164 cf. 111) declining more rapidly with taxon age (decay constant = 0.12, cf. 0.04) with respect to non-endemics. The majority of families exhibited this relationship, with a steeper regression slope for endemic Campanulaceae, Asteraceae, Fabaceae, Poaceae, Caryophyllaceae and Rosaceae, cf. non-endemics. Chromosome set duplication is more frequent and extensive in recent angiosperms, particularly young endemics, supporting the hypothesis of recent polyploidy as a key explanation of range restriction. However, as young endemics may also be diploid, polyploidy is not an exclusive driver of endemism

    A simplified model of chromatin dynamics drives differentiation process in Boolean models of GRN

    Get PDF
    Cellular types of multicellular organisms are the stable results of complex intertwined processes that occur in biological cells. Among the many others, chromatin dynamics significantly contributes\u2014by modulating access to genes\u2014to differential gene expression, and ultimately to determine cell types. Here, we propose a dynamical model of differentiation based on a simplified bio-inspired methylation mechanism in Boolean models of GRNs. Preliminary results show that, as the number of methylated nodes increases, there is a decrease in attractor number and networks tend to assume dynamical behaviours typical of ordered ensembles. At the same time, results show that this mechanism does not affect the possibility of generating path dependent differentiation: cell types determined by the specific sequence of methylated genes

    Description and composition of bio-inspired design patterns: a complete overview

    Get PDF
    In the last decade, bio-inspired self-organising mechanisms have been applied to different domains, achieving results beyond traditional approaches. However, researchers usually use these mechanisms in an ad-hoc manner. In this way, their interpretation, definition, boundary (i.e. when one mechanism stops, and when another starts), and implementation typically vary in the existing literature, thus preventing these mechanisms from being applied clearly and systematically to solve recurrent problems. To ease engineering of artificial bio-inspired systems, this paper describes a catalogue of bio-inspired mechanisms in terms of modular and reusable design patterns organised into different layers. This catalogue uniformly frames and classifies a variety of different patterns. Additionally, this paper places the design patterns inside existing self-organising methodologies and hints for selecting and using a design patter

    Isolation of a Wickerhamomyces anomalus yeast strain from the sandfly Phlebotomus perniciosus, displaying the killer phenotype

    No full text
    The yeast Wickerhamomyces anomalus has been studied for its wide biotechnological potential, mainly for applications in the food industry. Different strains of W. anomalus have been isolated from diverse habitats and recently from insects, including mosquitoes of medical importance. This paper reports the isolation and phylogenetic characterization of W. anomalus from laboratory-reared adults and larvae of Phlebotomus perniciosus (Diptera: Psychodidae), a main phlebotomine vector of human and canine leishmaniasis. Of 65 yeast strains isolated from P. perniciosus, 15 strains were identified as W. anomalus; one of these was tested for the killer phenotype and demonstrated inhibitory activity against four yeast sensitive strains, as reported for mosquito-isolated strains. The association between P. perniciosus and W. anomalus deserves further investigation in order to explore the possibility that this yeast may exert inhibitory/killing activity against Leishmania spp

    Xenobiotic-Free Medium Guarantees Expansion of Adipose Tissue-Derived Canine Mesenchymal Stem Cells both in 3D Fibrin-Based Matrices and in 2D Plastic Surface Cultures

    Get PDF
    Mesenchymal stem cells (MSCs) have been recently introduced in veterinary medicine as a potential therapeutic tool for several pathologies. The large-scale in vitro expansion needed to ensure the preparation of a suitable number of MSCs for clinical application usually requires the use of xenogeneic supplements like the fetal bovine serum (FBS). The substitution of FBS with species-specific supplements would improve the safety of implanted cells, reducing the risk of undesired immune responses following cell therapy. We have evaluated the effectiveness of canine adipose tissue-derived stromal vascular fraction (SVF) and MSCs (ADMSCs) expansion in the presence of canine blood-derived supplements. Cells were cultured on traditional plastic surface and inside a 3D environment derived from the jellification of different blood-derived products, i.e., platelet-poor plasma (PPP), platelet-rich plasma (PRP), or platelet lysate (PL). PPP, PRP, and PL can contribute to canine ADMSCs in vitro expansion. Both allogeneic and autologous PPP and PL can replace FBS for ADMSCs culture on a plastic surface, exhibiting either a similar (PPP) or a more effective (PL) stimulus to cell replication. Furthermore, the 3D environment based on homospecific blood-derived products polymerization provides a strong stimulus to ADMSCs replication, producing a higher number of cells in comparison to the plastic surface environment. Allogeneic or autologous blood products behave similarly. The work suggests that canine ADMSCs can be expanded in the absence of xenogeneic supplements, thus increasing the safety of cellular preparations. Furthermore, the 3D fibrin-based matrices could represent a simple, readily available environments for effective in vitro expansion of ADMSCs using allogeneic or autologous blood-products

    Quercetin and Cancer Chemoprevention

    Get PDF
    Several molecules present in the diet, including flavonoids, can inhibit the growth of cancer cells with an ability to act as “chemopreventers”. Their cancer-preventive effects have been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis as well as the antioxidant functions. The antioxidant activity of chemopreventers has recently received a great interest, essentially because oxidative stress participates in the initiation and progression of different pathological conditions, including cancer. Since antioxidants are capable of preventing oxidative damage, the wide use of natural food-derived antioxidants is receiving greater attention as potential anti-carcinogens. Among flavonoids, quercetin (Qu) is considered an excellent free-radical scavenging antioxidant, even if such an activity strongly depends on the intracellular availability of reduced glutathione. Apart from antioxidant activity, Qu also exerts a direct, pro-apoptotic effect in tumor cells, and can indeed block the growth of several human cancer cell lines at different phases of the cell cycle. Both these effects have been documented in a wide variety of cellular models as well as in animal models. The high toxicity exerted by Qu on cancer cells perfectly matches with the almost total absence of any damages for normal, non-transformed cells. In this review we discuss the molecular mechanisms that are based on the biological effects of Qu, and their relevance for human health

    Metachronous primary uterine cancer surgically resected during crizotinib treatment in a ALK-rearranged advanced lung adenocarcinoma

    Get PDF
    Rearrangements of the anaplastic lymphoma kinase (ALK) gene are present in 3% to 7% of nonsmall-cell lung cancers (NSCLCs). Patients harboring ALK rearrangements show very favourable outcomes if treated with targeted agents, among which crizotinib is the first and best studied. Crizotinib, an oral smallmolecule tyrosine kinase inhibitor of ALK, MET, and ROS1 kinases, is a very active and well tolerated drug. Nevertheless, the optimal therapy management with this new drug is still partially unknown, especially with regard to the safety of combined treatments. Recently, the integration of locoregional treatments has been proposed as a feasible multimodality strategy in selected patients with good clinical conditions and slowgrowing or oligoprogressive disease. In this report, a case of advanced lung adenocarcinoma, progressed after first line chemotherapy and re-biopsied detecting ALK rearrangement, is described. During crizotinib treatment the primary lung tumor showed an excellent regression; meanwhile a major surgery for a metachronous uterine cancer was safely and successfully carried out

    Temporal dynamics of the ABC transporter response to insecticide treatment: insights from the malaria vector Anopheles stephensi

    Get PDF
    In insects, ABC transporters have been shown to contribute to defence/resistance to insecticides by reducing toxic concentrations in cells/tissues. Despite the extensive studies about this detoxifying mechanism, the temporal patterns of ABC transporter activation have been poorly investigated. Using the malaria vector Anopheles stephensi as a study system, we investigated the expression profile of ABC genes belonging to different subfamilies in permethrin-treated larvae at different time points (30 min to 48 h). Our results showed that the expression of ABCB and ABCG subfamily genes was upregulated at 1 h after treatment, with the highest expression observed at 6 h. Therefore, future investigations on the temporal dynamics of ABCgene expression will allow a better implementation of insecticide treatment regimens, including the use of specific inhibitors of ABC efflux pumps

    Emergence of antitumor cytolytic T cells is associated with maintenance of hematologic remission in children with acute myeloid leukemia.

    Get PDF
    Although the graft-versus-leukemia effect of allogeneic bone marrow transplantation (BMT) is of paramount importance in the maintenance of disease remission, the role played by the autologous T-cell response in antitumor immune surveillance is less defined. We evaluated the emergence of antileukemia cytotoxic T-lymphocyte precursors (CTLp's) and the correlation of this phenomenon with maintenance of hematologic remission in 16 children with acute myeloid leukemia (AML), treated with either chemotherapy alone (5 patients) or with autologous BMT (A-BMT, 11 patients). Antileukemia CTLp's were detectable in 8 patients in remission after induction chemotherapy; none of them subsequently had a relapse. Of the 8 patients who did not show detectable CTLp frequency while in remission after induction chemotherapy, 7 subsequently experienced leukemia relapse. In patients undergoing A-BMT, molecular fingerprinting of the TCR-Vbeta repertoire, performed on antileukemia lines, demonstrated that selected antileukemia T-cell clonotypes, detectable in bone marrow before transplantation, survived ex vivo pharmacologic purging and were found in the recipient after A-BMT. These data provide evidence for an active role of autologous T cells in the maintenance of hematologic remission and also suggest that quantification of antileukemia CTLp frequency may be a useful tool to identify patients at high risk for relapse, thus potentially benefiting from an allogeneic antitumor effect
    corecore